A Case for Two-Component Signaling Systems As Antifungal Drug Targets
نویسندگان
چکیده
The recent outbreak of fungal meningitis caused by Exserohilum rostratum in patients receiving contaminated steroid injections resulted in 64 deaths, receiving a lot of press and briefly bringing into the public eye the difficulty of treating systemic fungal infections [1]. What is generally less well appreciated, however, is that there are several other, much more common fungal pathogens that pose a serious health threat. Indeed, currently more people die from these fungal diseases worldwide than from tuberculosis or malaria [2]. The fungal pathogens most frequently responsible for human mortality are: Aspergillus fumigatus, Candida spp. (predominantly C. albicans), Cryptococcus neoformans, Pneumocystis carinii, and dimorphic fungi that cause endemic mycoses (Coccidioides immitis, Histoplasma capsulatum, Blastomyces dermatitides, and Paracoccidioides brasiliensis). Fungal pathogens pose an especially high risk to individuals with compromised immunity, and this population of susceptible hosts is growing [3,4]. There has been a steady increase in the incidence of fungal infections over recent decades, primarily due to the AIDS pandemic, an increase in patients receiving cancer chemotherapy and allogeneic bone marrow transplants, a higher incidence of seriously ill patients in intensive care units, and the aging of the human population [3–8]. Despite the extensive list of fungal pathogens and the increasing frequency of their occurrence, we have at our disposal only a very limited number of antifungal drugs. The past two decades have seen the emergence of two classes of antifungals: those that target ergosterol synthesis (the azoles) and those that target cell wall β-1,3 glucan synthase (echinocandins). Of the azoles, the triazoles have gained importance as alternatives to the more toxic amphotericin B. Triazoles are fungistatic and their continued use has resulted in an increase in triazole resistance among formerly sensitive species and a rising number of disease cases caused by intrinsically azole-resistant non-albicans Candida species [4]. Echinocandins are fungicidal and are the drug of choice for treating most fungal infections, but these drugs are not effective in treating infections caused by C. neoformans, and echinocandin resistance is increasing in some Candida species [9]. Clearly, there is an urgent need to discover new drug targets to meet the challenges posed by fungal infections.
منابع مشابه
Identification and Evaluation of Novel Drug Targets against the Human Fungal Pathogen Aspergillus fumigatus with Elaboration on the Possible Role of RNA-Binding Protein
Bakground: Aspergillus fumigatus is an airborne opportunistic fungal pathogen that can cause fatal infections in immunocompromised patients. Although the current anti-fungal therapies are relatively efficient, some issues such as drug toxicity, drug interactions, and the emergence of drug-resistant fungi have promoted the intense research toward finding the novel drug targets. Methods: In searc...
متن کاملRNAi technology: A Novel approaches against fungal infections
Despite the introduction of new antifungal agents, resistances to antifungal therapy continue to increase and outcome of invasive fungal infections treatment is frequently suboptimal. A large amount of the recent effort in antifungal drug discovery has focused on a limited set of targets with functions known or expected to be important for fungal viability and virulence. A variety of techniques...
متن کاملRecent advances on biology and virulence
is an important human fungal pathogen, in terms of both its Candida albicans clinical significance and its use as an experimental model for scientific investigation. Although this opportunistic pathogen is a natural component of the human flora, it can cause life-threatening infections in immunosuppressed patients. There are currently a limited number of antifungal molecules and drug targets, a...
متن کاملNiosome-loaded antifungal drugs as an effective nanocarrier system: A mini review
Skin is an important organ of the body due to offering an accessible and convenient site for drug administration. One of the disadvantages of transdermal drug delivery is the low penetration rate of drugs through the skin. Over the past decades, nanoparticles have been used as drug delivery systems to increase therapeutic effects or reduce toxicity. Encapsulation of drugs in nanoparticulate ves...
متن کاملAntifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degra...
متن کامل